An Introduction to Friction SPH4C

Recall that the gravitational force acting on an object is also called the \qquad . Its magnitude is equal to: \qquad where m is \qquad , measured in kg, and $g=$ \qquad .

Weight is therefore measured in \qquad .

Recall that the normal force is the force acting to \qquad .

For an object on a horizontal surface with no vertical applied force, the normal force will be equal to the \qquad (since the vertical forces must \qquad).

If there is a vertical applied force, the normal force will \qquad equal the weight.

Example: A 5 kg book is resting on the table. If Ms. Rosebery is pushing down on the book with a force of 20 N , what is the normal force the table is exerting on the book?

Note that the normal force is always \qquad to the surface.
(If the surface is vertical (e.g., a magnetic board to which a magnet is attached) the normal force must be horizontal.)

Recall that friction is the force acting to oppose any \qquad and is therefore always \qquad to the attempted motion.

The magnitude of the force of friction will depend on the \qquad in contact and on the \qquad acting on the object attempting to move.

The magnitude of the frictional force is given by: \qquad where μ \qquad) is the \qquad ,
determined by the properties of the surfaces in contact. μ is dimensionless \qquad and is \qquad (approx.).
E.g. For steel on wood, $\mu_{\mathrm{k}}($ kinetic $)=$ \qquad $\mu_{\text {s }}($ static $)=$ \qquad
Note that \qquad :
it's harder to \qquad than \qquad .

For steel on ice,$\quad \mu_{\mathrm{k}}$ (kinetic) $=$ \qquad
$\mu_{\text {s }}($ static $)=$ \qquad
For rubber on dry concrete,

$$
\begin{aligned}
& \mu_{\mathrm{k}}(\text { kinetic })= \\
& \mu_{\mathrm{s}}(\text { static })=
\end{aligned}
$$

Example: A 1200-kg car without ABS brakes is skidding on dry concrete. What is the magnitude of the force of friction acting on the car?

If the car does have ABS brakes, the car's tires will continue to \qquad and \qquad the road while stopping and the relevant coefficient will be that of \qquad friction:

1. Match each of the following terms on the left to the most appropriate definition on the right.
\qquad friction
A. amount of matter in an object
\qquad mass
B. gravitational force on an object
\qquad mu
C. ratio of the frictional force to the normal force
\qquad normal force
D. force that acts opposite to motion or attempted motion of an object
\qquad weight
E. perpendicular force exerted by a surface
2. A box is being pushed westward across a surface. What is the direction of the frictional force?
A. West
B. East
C. up
D. down
3. A magnet is sliding down a fridge door. What is the direction of the frictional force acting on the magnet?
A. up
B. down
C. into the fridge door
D. out of the fridge door
4. A box of mass 12 kg is sliding across a floor. The coefficient of kinetic friction between the box and the floor is 0.30 .
(a) What is the normal force the floor is exerting on the box?
(b) What is the frictional force acting on the box?
(c) What is the acceleration of the box?
